A0: 841X1189

A1: 594X841

A2: 420X594

A3: 297X420

A4: 210X297

A5: 148X210

A6: 105X148

A7: 74X105

La idea que subyace en el formato es tratar de aprovechar el papel al máximo de modo que se desperdicie lo mínimo posible.

El pliego de papel fabricado mide 1 metro cuadrado y la medida de sus lados guardan una proporción tal que, dividiéndolo al medio en su longitud, cada una de las mitades siguen guardando la misma relación entre sus lados que el pliego original. Para que la medida de los lados cumpla esta propiedad, deben guardar una relación particular. 

De ese modo cuando se requiere un tamaño de papel, el fabricante puede cortar y remitir el material sin miedo a que el resto sea inútil o en su defecto por querer aprovecharlo haya que guardarlo indefinidamente en sus almacenes hasta que la casualidad permita despachar el sobrante. Por esta razón este método supone un abaratamiento en el costo de venta, ya que no requiere sobrecargar en el precio todo el material desechado. Si un comprador requiere un tamaño específico, todavía es posible servirlo, se trabaja a partir del tamaño Ax en que encaja el pedido y se le cobra ese tamaño más los cortes. Pero ahora el comprador puede querer reajustar el tamaño de su pedido para evitar sobrecostes ciñéndose a las medidas propuestas.

Por tanto, en los formatos ISO / DIN, en general:

  • La relación entre sus lados es: √2 = 1.414213562373095
  • Los lados se expresan en mm (redondeando al entero inferior)
  • Cada formato tiene (aproximadamente) la mitad de superficie del inmediato superior, con el siguiente criterio: su lado mayor es igual al lado menor del formato superior, y su lado menor es igual a la mitad del lado mayor del formato superior. Pero, en todos los casos, se redondean los lados en mm al entero inferior. Por eso, en los casos en que resultan decimales (mitades de números impares), no tienen exactamente la mitad de longitud, ni la mitad de superficie (sino un poco menos).